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This study is the largest and most comprehensive 
to date investigating the impact of Generative AI 
(GenAI) tools on software developer performance, 
addressing productivity, code quality, and adoption 
patterns. Using a mixed-method approach 
combining quasi-experimental design and Code 
Author Detection (CAD) analysis, we examined 
218,354 professional software developers 
working in an enterprise setting, covering about 
880 million commits extracted from mid-2022 to 
mid-2024. Despite the large sample, only 2,062 
developers consistently committed GenAI-authored 
code, demonstrating that very few developers 
exploit GenAI such that significant rework of the 
code provided is not required before committing 
it to source code repositories. Employing two 
independent methodologies to control for GenAI 
usage effects, we demonstrate that GenAI tools 
enhance developer productivity by approximately 
4%, while generally maintaining code quality. 
Remarkably, developers with moderate GenAI 
usage emerged as the highest overall performers, 
suggesting an optimal balance between AI 
assistance and human expertise. The study also 
uncovered unexpected adoption patterns, with 
64% of licensed GenAI users employing GenAI 
before officially being granted licences. These 
results show that GenAI use does not significantly 
reduce code quality and suggest potential for GenAI 
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to improve software development productivity. 
However, the low commit rate of GenAI authored 
code unaltered by human software engineers 
underscores the need for further research 
into implementation strategies and long-term 
impacts of GenAI in software engineering.

“Why are you still here, I thought we got  
a Copilot subscription?” 
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Introduction

The software development industry has generated 
a great deal of anticipation and expectation 
regarding the integration of Generative AI (GenAI) 
technologies. These advancements, particularly 
through Large Language Models (LLMs), present 
the possibility of significantly enhancing developer 
productivity, improving code quality, and reducing 
costs by automating routine and repetitive tasks. 
GenAI tools can generate code snippets, complete 
code blocks, and refactor existing codebases based 
on high-level instructions, which could streamline 
the development process.

Historically, innovations such as compilers in the 
1950s and Integrated Development Environments 
(IDEs) in the 1990s have substantially boosted 
developer efficiency and code reliability (Levy 
& Prlić, 2022). Similarly, GenAI is expected to 
reduce the cognitive load on developers, enabling 
them to focus on more complex and strategic 
tasks (Forsgren, Humble, & Kim, 2018). However, 
integrating GenAI tools also introduces challenges, 
such as the need for adequate training, the 
risk of over-reliance on AI-generated code, 
and ensuring the security and quality of the 
code authored by GenAI (Guan et al., 2023).

Before getting into a detailed account of the impact 
of GenAI on software developer performance, it is 
important to understand the broader context of AI’s 
impact on productivity. Recent studies and analyses 
suggest that, despite significant investments and 
widespread adoption claims, the economic impact 
of AI technologies, including GenAI, remains limited 
and difficult to quantify. For instance, a report 
by The Economist highlights that the anticipated 
revolution in productivity driven by AI technologies 
has not yet materialised in general economic 
measures, raising questions about the real-world 
effectiveness of these tools (The Economist, 2024).

The advent of Generative AI (GenAI) has already 
significantly impacted various industries, one of 
the industries likely to be impacted significantly 
appears to be software development. GenAI 
tools, such as Microsoft Copilot, leverage machine 
learning to assist developers by automating the 
initial drafting of code, providing code explanations, 
and identifying potential bugs in source code or 
other issues. While some industry participants, 
particularly those selling Generative AI solutions, 
suggest that the integration of AI into the 
software development life cycle has the potential 
to substantially enhance productivity and code 
quality. Other industry commentators suggest that 

the inclusion of GenAI into software development 
workflows may impair software developer 
performance, often anticipating that the review and 
correction of inappropriate and or poor quality code 
will ultimately impair progress. However, the actual 
impact of these tools on developer performance 
remains a subject of empirical investigation.

Previous studies have demonstrated mixed 
results regarding the impact of GenAI on software 
development. For instance Peng et al. (2023) 
found that developers using Copilot completed 
tasks 55.8% faster than a control group. 
Similarly, Almeida et al (2024) reported that AI 
tools improved the detection of code smells in 
code review by 40% and faster than manual 
review, resulting in higher overall code quality. 
Chatterjee et al. (2024) use artificial coding tasks 
to evaluate the impact on developer performance 
in an enterprise setting and generally describe 
improved performance and satisfaction though 
decline to quantify this specifically. However, 
these studies primarily relied on self-reported 
data and lacked rigorous experimental controls, 
making it difficult to generalise the findings.

The integration of AI tools in software development 
has raised concerns about potential trade-offs 
between productivity and code quality. Some 
researchers have suggested that while AI 
might increase the speed of code production, it 
could potentially lead to lower code quality or 
increased technical debt (Sobreira et al., 2023; 
Lwakatare et al., 2022). This concern stems 
from the possibility that developers might rely 
too heavily on AI-generated code without fully 
understanding or optimising it, or that the pressure 
to deliver code quickly might overshadow quality 
considerations. However, others argue that AI 
tools, when used appropriately, could enhance both 
productivity and quality by allowing developers 
to focus on higher‑level design and problem-
solving tasks (Rahman et al., 2023). This study 

This study is the largest and 
most comprehensive to date 
investigating the impact of 
Generative AI (GenAI) tools on 
software developer performance
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provides empirical evidence to address this 
debate and assess the actual impact of GenAI 
tools on both productivity and code quality 
in real-world development environments.

A fundamental shortcoming of prior research is  
an incomplete and inadequate account of software 
developer performance. This paper addresses this 
shortcoming by evaluating software development 
performance as comprising three components: 
productivity, quality, and cost. These are the primary 
considerations of any engineering endeavour, 
and software engineering is no exception to the 
challenge of simultaneously optimising these 
three fundamental dimensions of performance.

The measure of Productivity, Coding Effort, is a 
measure of the intellectual effort expended by a 
developer delivering a single change into the source 
code of an application. Coding Effort is calculated 
by statistically evaluating every source code change 
made by developers in terms of up to 36 static 
source code metrics measuring various aspects of 
Volume, Complexity, and Interrelatedness while 
considering the context worked in (e.g. a complex 
legacy software component or a brand new 
project). Coding Effort is evaluated based on the 
changes committed into version control systems on 
a per commit per file basis, which is called Actual 
Coding Effort (ACE). As a measure of Productivity, 
Billable Coding Effort per developer per day is a 
measure of the average amount of Coding Effort 

Productivity Quality Cost

Performance

We analyse the impact of 
GenAI on software developer 
performance, focusing on 
Productivity (measured as 
Billable Coding Effort per 
Day, BCE/ Day) and Quality 
(measured as the percentage 
of Aberrant Coding Effort, 
% Aberrant BCE)

an individual developer delivers per day To obtain 
the target variable of this paper (BCE/day), Billable 
Coding Effort is adjusted for stored changes and 
prorated across working days (i.e. adjusted for 
weekends and holidays) to get the average effort 
per day, or BCE/day. The range for BCE/day ranges 
from 0 to 5.5. This means that the maximum 
coding effort a developer can obtain on a single 
day is 5.5 hours. This is a populational maximum, 
based on empirical studies, that accounts for the 
time that top decile developers would spend on “at 
keyboard programming” aspects of their role. This 
excludes meetings, breaks, and non-coding work.

The measure of Quality, Aberrant Coding Effort, 
is a measure of the quality, more specifically 
maintainability, of source code. The aberrancy of 
source code provides an objective account of how 
easy it is for a developer who is naive to the code  
to reach a level of understanding of the code so that 
they can extend, alter, or improve it. It is calculated 
by evaluating the proportion of code that is aberrant 
relative to the codebase in which it sits across more 
than 20 static source code metrics. Code is flagged 
as aberrant when it violates thresholds that have 
been benchmarked across an enterprise’s software 
estate and BlueOptima’s Global Benchmarks. The 
percentage represents the ratio of coding effort 
devoted to unmaintainable changes so a lower 
percentage is more desirable. It considers the 
maintainability of a file before changes are made, 
so no penalty is given for changes in an already 
unmaintainable file unless they push a static metric 
further past the threshold of un-maintainability.
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“What are the effects of GenAI use on developer productivity and quality?”

Impact of GenAI Use on Selected Developers in Selected Teams: We use 
a quasi-experimental prospective design to compare the performance of 
developers identified as being granted access to GenAI tools (Experimental 
Group) with those who were not (Control Group). Our aim is to determine whether 
GenAI use leads to observable differences in productivity and quality.

“Were developers accurately allocated to GenAI and control groups?”

Control and Representativeness of Selected Developers in Teams Approach: By 
applying an automated approach to detecting the use of GenAI by those developers 
allocated to the experimental group, we investigate the extent to which the developers 
were appropriately allocated to these groups. This includes assessing whether the 
selected developers commit GenAI-authored code before the date at which they 
were allocated GenAI tool licences or if they commit GenAI-authored code at all

“How do different levels of GenAI usage (e.g. high, low, none) influence 
developer performance?”

Drivers of Differences in Productivity and Quality: We then explore the relationships 
between GenAI usage levels and developer performance. Specifically, we examine the 
relationship between high, low, and no GenAI usage on performance and how these 
insights can inform more effective utilisation of AI tools in software engineering.

For the purposes of the relatively short duration 
of this study, Cost, in the context of software 
development performance, is the fully loaded 
cost of employing software developers. This is 
assumed to be a constant as individual developers 
are only considered if they are continuously 
employed by the software development 
organisation for the duration of the study.

This study also addresses prior research’s 
shortcomings in isolating the impact of using GenAI 

versus control groups who do not have access to the 
technology. We employ a robust quasi‑experimental 
design and leverage BlueOptima’s Code Author 
Detection (CAD) capabilities. We analyse the impact 
of GenAI on software developer performance, 
focusing on Productivity (measured as Billable 
Coding Effort per Day, BCE/Day) and Quality 
(measured as the percentage of Aberrant Coding 
Effort, % Aberrant BCE). 

The study is structured around four key questions:

This study, which is the most comprehensive and large-scale study of its nature that we are aware 
of, allows us to provide a robust and detailed understanding of the impact of GenAI on software 
development, highlighting both its potential benefits and the complexities involved in its implementation.

“What are the trends in GenAI usage and its impact on productivity  
and quality across a large developer population?”

Observations Across Large Developer Populations: We extend our analysis to a larger 
cohort of developers and evaluate those who have, through the course of their normal 
work commenced using GenAI in a post hoc quasi-experimental design. This broader 
analysis helps us understand the general trends in GenAI usage and its impact on the same 
productivity and quality metrics across a much larger and more diverse developer population.

1

2

3

4
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Method

Study Design
This study employs a mixed-method approach, 
utilising both quasi-experimental design and 
BlueOptima’s Code Author Detection (CAD) analysis 
to evaluate the impact of Generative AI (GenAI) on 
software developer performance. BlueOptima’s Code 
Author Detection is a Machine Learning technology 
designed and developed by BlueOptima to detect AI-
Contributed source code. This technology identifies 
code, at the method level, that has been authored 
by Machine Learning techniques, such as Generative 
AI (e.g. OpenAI ChatGPT, Meta CodeLlama, Google 
Gemini etc.), and committed to version control 
repositories without material editing from the 
committing developer. CAD does not capture IDE-
based “autocomplete” contributions of ML/AI in cases 
where developers subsequently adjust and edit 
the autocompleted code making it stylistically and 
structurally unrecognisable as ML authored code. 
CAD does not seek to identify this usage of Machine 
Learning generated code as it is a less impactful 
assistive use case rather than a direct replacement 
of human developer effort that is not radically 
dissimilar to existing code completion technologies. 
See Appendix A for examples of the types of 
change that makes GenAI code Human Authored.

The analysis is conducted in two parts:

1.	 Licence-based Group Comparison: We 
use ANOVA to compare developers officially 
granted access to GenAI tools (Experimental 
Group) with those who were not (Control 
Group) within teams of software engineers.

2.	 CAD-based Group Comparison: We use 
BlueOptima’s CAD capabilities to independently 
detect AI-authored code and assess the 
impact of GenAI usage on a larger population 
of developers who have used GenAI and 
compare them to those that have not over 
the same period of time using ANOVA.

Participants

Licence-based Group Comparison: This method 
involved identifying a group of developers to be 
allocated GenAI licences and identifying a control 
group corresponding with this selection of GenAI 
users. 

Experimental Group (EG-ALL): The developers 
(N=3268) included in the study were identified 
by those that manage them in their software 

development organisation, in some cases 
they may have volunteered to receive the 
GenAI licences which were then approved 
by those managing the GenAI evaluation in 
their organisation. These developers belong 
to 317 software engineering teams within 
28 Organisations across 10 Enterprises. 

Control Group (CG-ACT-DEV): Active developers 
matching the activity criteria of EG-ALL but without 
GenAI tool licences (N = 3168) were sampled 
from 418 teams of software engineers across 
40 Organisations within the same 10 Enterprises 
as the Experimental Group (EG-ALL) developers.

CAD-based Group Comparison: CAD is run 
over the activity of 218,354 professional software 
developers from July 2022 to May 2024 across 

218,354
Total developers 
analyzed

432,058
Source code 
repositories

2,062
Developers
committing 
GenAI-authored 
code

July 2022 – May 2024

Active Developers in 
Pre and Post Periods

20,548
Frequently committing developers

software 
development 
database

Study
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432,058 source code repositories operated by 
the software development organisations within 
32 commercial enterprises. This population was 
reduced to 77,338 to include those developers 
that had activity in both the pre-treatment and 
post‑treatment from their first ML-authored 
commit date to May 2024. This ensures that we 
are considering developers who have a tenure 
of activity over duration of the comparison. To 
further refine this population to more broadly active 
developers they were required to have committed 
for at least 6 months in each period, and to be 
active within 45 days of their ML-authored commit 
date. This refinement resulted in 47,881 developers 
in the pre-period and 28,525 in the post-period. 

Next, only those developers who met the above 
criteria in both periods were selected, reducing the 
final population to 20,548 frequently committing 
developers. While this is a significant reduction 
in developer population given the initial activity 
of 218,354 developers, this allows us to be 
confident of the active development role of the 
final 9.4% of these developers on the relevant 
codebases over the relevant time periods.

Finally, CAD was run across the entire original 
population and identified 2,062 developers who 

had committed GenAI authored code within 
this refined group, allowing us to categorise the 
remaining 18,486 developers of the final 20,548 
developers as the Zero-AI group. It is important 
to point out that unlike the Licence-based group, 
we cannot know the extent to which this group 
of 20,548 developers have had GenAI tools made 
available to them. While a number of them may 
have used the various free offerings available on 
the internet and others may have been officially 
permitted to use GenAI and been granted 
licences, others may have been prohibited from 
using GenAI as a matter of corporate policy. 

To further refine those developers using GenAI 
the percentage of ML-authored Actual Coding 
Effort (ACE) was computed for the CAD 
developers to assess their degree of GenAI 
usage. Developers with an ML-authored ACE 
percentage higher than the median value 
were categorised as High AI-Contributing 
Developers, while those with a lower percentage 
were categorised as Low AI‑Contributing 
Developers. This split the CAD group into two 
equal categories of 1,031 developers each.

Thus, three distinct developer groups were formed 
for the analysis as set out in the table below.

Developer Group Description Sample 
Size (N)

High AI-Contributing 
Developers

Developers with above average levels of AI-generated 
code in their commits 1031

Low AI-Contributing 
Developers

Developers with below average levels of AI-generated 
code in their commits 1031

No AI-Contributing 
Developers Developers not committing any AI-generated code 18,486

Figure 1: This table shows the sample sizes used in the CAD-based Group Comparison
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Identifying Pre and Post GenAI Usage
The validity of both approaches in isolating 
the impact of GenAI is to be able to accurately 
isolate the point at which developers commenced 
using GenAI. Below, we describe the point at 
which GenAI is used by the treatment group 
and how we have selected an appropriate time 
frame of observation for the control group.

Licence-based Group

The approach to identifying the transition point 
for the Licence-based Group comparison is 
straightforward in that it involves taking the date at 
which a particular subgroup or team were allocated 
their licences. Once this is done the comparison is 
made to members of the same subgroup or team 
who were not allocated licences as a control group. 
The time-frames considered are set out below.

Experimental Group (EG-ALL): 6 months 
before and after the date of licence allocation 
for a developer in this group, respectively.

Control Group (CG-ACT-DEV): Since this group 
was not provided a licence to Gen AI, this 
date was approximated using the median 
date of licence allocation among the EG-ALL 
developers. This ensures a fair comparison of 
the CG-ACT-DEV and EG-ALL groups. 6 months 
before and after this median date is the Pre 
and Post period for the CG-ACT-DEV group.

CAD-based Group Comparison

BlueOptima’s CAD capabilities observed the initial 
usage of Gen-AI code in January 2023. To assess 
the pre-Gen-AI performance of these developers, a 
six-month time period from July 2022 to December 
2022 would be considered the pre-period. July 2022 
is the lower bound for performance assessment 
in the pre-time frame for all three categories of 
developers (High, Low, and No-AI), and May 2024 
is the upper bound. Each developer is considered 
within this upper and lower bound as follows.

Developer Group Pre-treatment Period Post-treatment Period

High AI-Contributing 
Developers

From July 2022 to the date of the first 
ML‑authored commit detected through CAD 
for a developer

From the first ML-authored 
commit date to May 2024

Low AI-Contributing 
Developers

From July 2022 to the date of the first 
ML‑authored commit detected through CAD 
for a developer

From the first ML-authored 
commit date to May 2024

No AI-Contributing 
Developers

Date is approximated as the median of the 
first ML-authored commit date across the 
High and Low-AI developer population. So 
July 2022 to this median date would be the 
pre-period for this group

From the median 
ML‑authored commit date 
for this group to May 2024

To keep the Licence-based Group Comparison ANOVA comparable with the CAD-based Group 
Comparison ANOVA the High AI-Contributing and Low AI-Contributing are combined for this analysis. 

Statistical Analysis
1.	 Quasi-Experimental Design ANOVA: We conducted a two-way ANOVA to assess the main and 

interaction effects of group (Experimental vs. Control) and timeframe (Pre vs. Post) on productivity  
and quality metrics.

Figure 2: This table defines the different groups of developers using tn the CAD-based 
Group comparison
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Productivity Quality

Developer 
Group

Pre BCE/
Day

Post BCE/
Day

%  
Change

Pre 
Aberrancy %

Post 
Aberrancy %

%  
Change

ML 2.32 2.42 +4.09% 5.95 5.96 +0.09%

Zero-AI 1.92 1.89 -1.81% 6.28 6.33 +0.89%

CG-ACT-DEV 2.12 2.01 -5.12% 6.393 6.390 -0.05%

EG-ALL 2.01 2.09 +3.99% 6.24 6.08 -2.63%

2.	 Licence-based Group Comparison Validation Chi-Square analysis: We applied a Chi-Squared 
analysis on the Licence-based Group once CAD was used to analyse the commits made by the 
developers considered in this analysis. This analysis is to establish the extent of GenAI usage as 
observed from their committed code and the timing of GenAI usage by the treatment group.

	 The Chi-Squared test was used to analyse the association between early adoption 
of AI tools (before official licence assignment) and improvement in performance 
(measured as Avg. BCE/Day). The test results show a p-value of 0.35, indicating no 
significant association between early adoption and performance improvement.

3.	 T-Tests: To further explore the performance differences and usage of GenAI in the CAD-based 
Group Comparison independent sample t-tests were conducted to compare the productivity and 
quality between High, Low, and No AI-Contributing Developers for both pre and post timeframes.

The percentage changes were calculated as follows: 

Productivity Quality

Developer 
Group

Pre BCE/
Day

Post BCE/
Day

%  
Change

Pre 
Aberrancy %

Post 
Aberrancy %

%  
Change

High AI-Contrib. 2.01 2.18 +8.4% 5.99 6.01 +0.33%

Low AI-Contrib. 2.59 2.64 +1.93% 5.92 5.91 +0.16%

No AI-Contrib. 1.92 1.88 -2.08% 6.27 6.33 +0.9%

  Percentage Change = ( Post–Pre  ) x 100
Pre

These statistical analyses enable us to quantify the impact of GenAI on software developer performance 
and draw conclusions regarding productivity and quality improvements.

Figure 3: Productivity and quality metrics compared across 4 developer groups: ML – developers with 
GenAI access who made changes identified as GenAI, Zero-Al – developers with GenAI access who made 
changes identified as GenAI, CG-ACT-DEV – the control group with no GenAI access, EG-ALL – Developers 
who had access to GenAI

Figure 4: Productivity and quality metrics compared across 3 developer groups: High AI-
Contrib. – developers with above average levels of AI-generated code in their commits, 
Low AI-Contrib. – developers with below average levels of AI-generated code in their 
commits, No AI-Contrib. - developers not committing any AI-generated code
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ANOVA Results Productivity (BCE/Day) Quality (% Aberrant Coding Effort)

Licence-based Group Comparison ANOVA

Main Effect of Group F = 28.98, p < 0.00001 F = 11.97, p < 0.001

Main Effect of Timeframe F = 9.96, p < 0.01 F = 4.61, p < 0.05

Interaction Effect 
(Group*Timeframe) F = 17.87, p < 0.0001 F = 1.03, p > 0.31

CAD-based Group Comparison ANOVA

Main Effect of Group F = 959.14, p < 0.00001 F = 31.51, p < 0.00001

Main Effect of Timeframe F = 2.26, p > 0.13 F = 4.18, p > 0.45

Interaction Effect 
(Group*Timeframe) F = 11.44, p < 0.001 F = 2.35, p > 0.57

Results

The means for the four groups of developers included in the quasi-experimental analysis are provided below.

The results of the Licence-based and CAD-based quasi-experimental grouping ANOVAs are provided below.

Figure 6: Anova results across the following comparisons:  
1) Licence-based: Main Effect of Group – developers granted access to GenAI compared 
with those not granted access, Main Effect of Timeframe – the pre and post timeframes, 
Interaction Effect – the combined comparison  
2) CAD-based: Main Effect of Group – developers with AI-generated Code and 
compared with those who haven’t had any AI-generated code, Main Effect of Timeframe 
– the pre and post timeframes , Interaction Effect – the combined comparison 

Figure 5: Productivity and quality metric changes compared across 4 developer groups: ML – developers 
with GenAI access who made changes identified as GenAI, Zero-Al – developers with GenAI access who 
made changes identified as GenAI, CG-ACT-DEV – the control group with no GenAI access, EG-ALL – 
Developers who had access to GenAI
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Licence-based Group Comparison ANOVA
The Licence-based Group Comparison ANOVA 
aimed to compare the performance of developers 
officially granted access to GenAI tools 
(Experimental Group) with those who were not 
(Control Group).

Productivity (BCE/Day): Developers in the 
Experimental Group (EG-ALL) showed a notable 
improvement in productivity, increasing from 2.011 
BCE/Day in the pre-GenAI period to 2.092 BCE/
Day in the post-GenAI period, a 3.99% increase. 
In contrast, the Control Group (CG-ACT-DEV) 
experienced a decrease in productivity from 2.116 
BCE/Day to 2.007 BCE/Day, a decline of 5.12%. 
Within the Experimental Group, the ML Group 
saw an increase from 2.32 BCE/Day to 2.42 
BCE/Day, while the Zero-AI Group observed a 
decrease from 1.92 BCE/Day to 1.89 BCE/Day.

Quality (% Aberrant Coding Effort): In terms 
of quality, the Experimental Group exhibited a 
slight improvement, with a decrease in Aberrant 
Coding Effort from 6.24% to 6.08%, translating 
to a 2.63% reduction in aberrancy. The Control 
Group’s quality remained relatively stable, with a 
minor reduction from 6.393% to 6.390%, equivalent 
to a 0.05% decrease. Within the Experimental 
Group, the ML Group’s aberrancy increased 
from 5.95% to 5.96%, whereas the Zero-AI 
Group saw an increase from 6.28% to 6.33%.

The ANOVA results indicated significant 
differences in productivity and quality between 
the Experimental and Control groups. The Main 
Effect of Group (Experimental vs. Control) on 
productivity was significant (F = 28.98, p < 
0.00001), and the Main Effect of Timeframe (Pre vs. 
Post) was also significant (F = 9.96, p < 0.01). The 
Interaction Effect between Group and Timeframe 
was significant as well (F = 17.87, p < 0.0001), 
suggesting that the productivity improvements 
were notably influenced by the use of GenAI tools. 

In terms of quality, the Main Effect of Group was 
significant (F = 11.97, p < 0.001), while the Main 
Effect of Timeframe was also significant (F = 
4.61, p < 0.05). The Interaction Effect between 
group and timeframe was not significant (F 
= 1.03, p > 0.31), indicating that the quality 
changes were relatively stable over time.

CAD-based Group Comparison ANOVA
The CAD analysis ANOVA evaluated the effects 
of GenAI-authored commits on productivity and 
quality by comparing developers who used GenAI 
(ML group) with those who did not (Zero-AI group).

These results independently 
confirm the positive impact 
of GenAI on productivity 
observed in the licence-
based comparison while also 
showing that using GenAI 
tools does not negatively 
impact code quality

Productivity (BCE/Day): Developers in the ML 
group experienced a 4.09% increase in productivity, 
from 2.32 BCE/Day to 2.42 BCE/Day. In contrast, 
the Zero-AI group saw a 1.81% decline in 
productivity, from 1.92 BCE/Day to 1.89 BCE/Day.

Quality (% Aberrant Coding Effort): In terms 
of quality, the ML group observed a slight drop, 
with aberrancy increasing from 5.95% to 5.96%, 
a 0.09% rise. The Zero-AI group also saw a minor 
degradation in quality, with aberrancy increasing 
from 6.28% to 6.33%, a 0.89% increase.

The ANOVA results indicated significant differences 
in productivity between the groups. The Main Effect of 
Group (ML vs. Zero-AI) on productivity was significant 
(F = 959.14, p < 0.00001), and the Interaction Effect 
between group and timeframe was also significant 
(F = 11.44, p < 0.001). For quality, the Main Effect of 
Group was significant (F = 31.51, p < 0.00001), but 
the main effect of the timeframe was not significant 
(F = 4.18, p > 0.45). The Interaction Effect between 
group and timeframe was not significant (F = 2.35, 
p > 0.57), indicating that the quality changes were 
consistent across both groups over time.

These results independently confirm the positive 
impact of GenAI on productivity observed in the 
licence-based comparison while also showing  
that using GenAI tools does not negatively impact 
code quality.

Licence-based Group Validation 
Chi‑Square Analysis
Extent of GenAI Usage: Of the 3268 developers in 
the experimental group, 392 (12%) were found to 
commit ML-authored code. This indicates a notable 
subset of developers actively using GenAI tools.
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Timing of GenAI Usage: Among the 394 developers 
who committed ML-authored code, 252 (64%) had 
their first ML-authored commit date well before the 
official date of Copilot licence assignment. However, 
the Chi-Squared test indicates that there is no 
significant association between early adoption and 
performance improvement, with a p-value of 0.35.

Statistical Validation: The Chi-Squared test 
was used to analyse the association between 
early adoption of AI tools (before official 
licence assignment) and improvement in 
performance (measured as Avg. BCE/Day).

The test results show a p-value of 0.35, indicating 
no significant association between early adoption 
and performance improvement.

Specifically, 122 (48%) early adopters saw an 
improvement in performance, compared to 130 
(52%) who did not. In contrast, 1559 (51%) 
developers who did not adopt early showed 
improvement, compared to 1457 (49%) who did not.

T-Tests for MLCAD Groupings
The means of the High, Low, and No-GenAI users 
saw the following results first shown graphically 
and then with specific values as a table.
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Figure 7: Productivity and quality metrics compared across 3 developer groups: High 
AI‑Contrib. – developers with above average levels of AI-generated code in their commits, 
Low AI-Contrib. – developers with below average levels of AI-generated code in their 
commits, No AI-Contrib. – developers not committing any AI-generated code
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Table 3: T-Test Results for Pre and Post Timeframes

Group 
Comparison

Pre-Timeframe 
P-value

Post-Timeframe 
P-value

Productivity 
(BCE/Day)

Quality 
(Aberrancy %)

High vs. Low 7.103e-56 2.268e-36 Significant Not significant

High vs. None 0.000725 1.766e-21 Significant Significant

Low vs. None 4.120e-124 2.570e-154 Significant Significant

The t-test analyses revealed that high and low 
AI-contributing developers are significantly more 
productive than non-users in both pre- and post-
timeframes. High AI-contributing developers 
showed higher productivity compared to low 
AI-contributing developers. In terms of quality, 
high AI-contributing developers maintained 
better quality compared to non-users, but 
there was no significant difference between 
high and low AI-contributing developers.

Summary of Findings
The results of the Licence-based and CAD-
based quasi-experimental grouping ANOVAs 
indicate that Generative AI (GenAI) positively 
impacts software developer performance.

In the Licence-based Group Comparison, 
developers with GenAI access showed a 
3.99% increase in productivity, while those 
without it saw a 5.12% decrease. Quality 
improved slightly for the Experimental Group 
with a 2.63% reduction in aberrancy, while the 
Control Group’s quality remained stable.

The CAD-based Group Comparison ANOVA further 
supported these findings. Developers who used 
GenAI experienced a 4.09% increase in productivity, 
while those who did not use GenAI saw a 
1.81% decline. In terms of quality, both groups 
showed minimal changes, with the GenAI users 

experiencing a slight 0.09% increase in aberrancy 
and the non-users showing a 0.89% increase.

The significant ANOVA results from both analyses 
suggest that GenAI tools notably enhance 
productivity without compromising code quality.

Subsequent T-Tests on the CAD data revealed 
that High AI-Contributing Developers 
experienced an 8.4% increase in productivity, 
and Low AI-Contributing Developers saw 
a 1.93% increase, while No AI-Contributing 
Developers saw a 2.08% decline. Quality 
changes were minor across all groups.

T-Tests confirmed that High and Low AI-
Contributing Developers were significantly 
more productive than non-users, with high 
contributors maintaining better quality. 
However, differences in quality between high 
and low contributors were not significant.

These findings consistently demonstrate the 
positive effect of GenAI on productivity across 
different analytical approaches, while also 
indicating that code quality is maintained 
or slightly improved with GenAI use.

T-Tests were then used to compare productivity and quality between High, Low, and No AI‑Contributing 
Developers for both pre and post timeframes. The results are summarised in Table 3.

Figure 8: T-test comparison on the groups: High – developers with above average levels 
of AI-generated code in their commits, Low – developers with below average levels of AI–
generated code in their commits, None – developers not committing any AI-generated code
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Discussion

This comprehensive study provides critical insights 
into the impact of Generative AI (GenAI) tools on 
software developer performance. It addresses 
key questions about productivity, code quality, 
and the complexities of AI integration in software 
development workflows. Our findings reveal a 
complex landscape where the benefits of GenAI 
are significant but vary based on usage patterns 
and individual developer characteristics.

Widespread Analysis and Limited  
GenAI Usage
One of the most striking findings of our study 
is the relatively low incidence of GenAI code 
being committed without significant rework 
by developers. In the case of the License-
based comparison group, 3,268 were granted 
access to and officially permitted to use GenAI, 
and yet only 394 (12%) committed multiple 
instances of code authored by GenAI that were 
not materially altered by those developers. 

Despite analysing the activity of over 218,000 
developers in the GenAI-based comparison 
group, only 2,062 were found to have material 
and consistent contributions to version control 
systems of GenAI-authored code that have not 
been significantly edited and altered by the 
developer contributing it. This represents less 
than 1% of the developer population analysed.

It may be the case that the enterprises for which 
a number of these 218,000 developers work 
may prohibit the use of LLM due to information 
security concerns (Zhu et al., 2024). Whatever 
the permissiveness of the enterprises considered 
in terms of the use of GenAI it is clear that 
the integration of GenAI tools into software 
development practices is still in its early stages 
and that the LLMs producing the code have not 
achieved a level of proficiency in accommodating 
the context of the target codebase nor 
understanding the desired requirements to not 
require further manipulation by developers. 

This raises important questions about the 
nature of the efficiency that is being delivered 
by GenAI. Specifically, it highlights the fact 
that while GenAI can compose source code, 
currently, this source code requires significant 
alteration before it is appropriately assimilated 
into a wider codebase to be committed to version 
control systems. This suggests that if wider use 
of GenAI is in fact happening in enterprises the 

One of the most striking 
findings of our study 
is the relatively low 
incidence of GenAI 
code being committed 
without significant 
rework by developers

use cases must primarily relate to scenarios 
other than largely autonomous composition 
of source code capable of delivering value 
to end users in Production environments.

Impact on Productivity and Quality: 
Licence-based vs. CAD-based Analysis
Our study employed two complementary 
approaches to assess the impact of GenAI: a 
licence-based group comparison and a Code 
Author Detection (CAD) based analysis.

The licence-based quasi-experimental ANOVA 
revealed a clear positive impact of GenAI tools 
on developer productivity. The Experimental 
Group (EG-ALL) showed a 3.99% increase in 
productivity (BCE/Day) after GenAI implementation, 
contrasting with the Control Group’s (CG-
ACT-DEV) 5.12% decrease. Importantly, this 
productivity gain did not come at the expense of 
code quality; the Experimental Group saw a 2.63% 
reduction in Aberrant Coding Effort, indicating 
a slight improvement in code maintainability.

The CAD-based ANOVA provided further support 
for these findings. In this analysis, developers 
who used GenAI (regardless of the level of usage) 
experienced a 4.09% increase in productivity, 
while those who did not use GenAI saw a 1.81% 
decline. This analysis reinforces the positive 
impact of GenAI on productivity observed in the 
licence-based comparison. Interestingly, the quality 
metrics showed minimal increases in Aberrancy 
across both groups in the CAD-based analysis, 
with Zero-AI users having a higher increase in 
Aberrancy (0.89%) as compared to developers 
using GenAI (0.09%) (reduction in quality).
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So, the average increase in productivity across 
these two approaches is just over 4%. While 
this may not seem a radical improvement in 
productivity it should be understood that genuine 
and enduring improvements in productivity are 
harder to achieve than one might expect given the 
volatile and unreliable percentage improvements 
in measures of productivity that are quoted based 
on workflow based metrics (e.g. DORA Lead Time 
to Change, (BlueOptima, 2024)). Such measures 
are often short-lived as they relate to changing 
developer behaviour regarding conventions of 
ways of describing, coordinating, and managing 
work tasks within and across teams through 
task tracking systems. Code artefact measures 
of productivity offer a much deeper and reliable 
account of productivity. Based on the BlueOptima 
Global Benchmark of Productivity, Quality, and 
Cost, an enterprise of 250 software developers, 
a 4% increase in productivity while maintaining 
code quality represents a cost efficiency of over 
two million dollars per year (see Appendix B).

These findings from both ANOVAs challenge 
the notion that increased productivity through 
GenAI use necessarily leads to lower code 
quality. Instead, they suggest that GenAI 
tools can enhance productivity without 
negatively impacting code quality.

Adoption Patterns and Performance
The CAD analysis revealed intriguing patterns in 
GenAI adoption and usage. In the licence-based 
group, only 12% of developers in the Experimental 
Group were found to commit materially unaltered 
ML-authored code, suggesting that the majority 
either use GenAI tools for line completion, 
documentation, or other ways not detectable by 
our current methods or primarily as assistive tools 
for code ideation and drafting rather than direct 
code generation. The prevalence of this across 
the much larger CAD-based sample of more than 
218,000 was less than 1%, though the availability 
of GenAI tools to this entire population is unknown. 

The ideal use case for GenAI would be to compose 
performant, accurate, and appropriate high-
quality code that developers can confidently 
commit to version control systems. This would 
maximise GenAI’s performance impact. 
However, this study demonstrates that this is 
not GenAI’s predominant use case in practice.

Another important finding was that 64% of 
developers who committed ML-authored code 
did so before their official licence assignment 
date. However, the Chi-Squared test indicates 

that there is no significant association 
between early adoption and performance 
improvement, with a p-value of 0.35. 

These results raise important questions about  
the relationship between developer initiative,  
tool adoption, and performance enhancement.  
It suggests that the organisations involved in the 
study did not have the control they thought they 
had over the use of software development tooling 
by their developer populations. It also suggests 
that those developers more likely to adopt new 
tooling of their own volition are more likely to be 
able to yield productivity gains from new tooling.

Levels of AI Integration and  
Developer Performance
Our analysis of High, Low, and No AI-Contributing 
Developers across a larger population provided 
further detail to our understanding of GenAI’s 
impact. High AI-Contributors saw a 8.4% 
productivity increase, while Low AI-Contributors 
experienced a 1.93% increase. Conversely, No AI-
Contributors faced a 2.08% productivity decline. 
These findings suggest a positive correlation 
between AI tool usage and productivity gains, 
but also hint at potential diminishing returns, 
given developers of higher attainment seeing 
less benefit or challenges with very high levels 
of AI integration, and given the apparent 
tendency to lower quality of this code.

Interestingly, and perhaps most significantly, 
Low AI-Contributing Developers emerged as 
the highest overall performers, balancing high 
productivity with the best code quality. This 
suggests an optimal “sweet spot” in AI tool usage 
where developers leverage AI assistance to 
enhance their work without over-relying on it. It 
underscores the importance of human oversight 
and judgement in effective AI integration.

Finally, researchers (Dell’Acqua et al., 2023) have 
observed a “levelling” effect of Generative AI 
outside of the software development industry 
whereby less capable operatives in a given work 
task see the largest improvements in performance. 
This phenomenon is observed in this study too 
with the High AI-Contributors showing the most 
liberal use of the technology while also showing 
the largest improvement in productivity.along 
with only a very minor decline in quality.

An alternative account could be simpler and 
that the higher performing developers were 
less likely to accept code suggestions made 
by GenAI without ensuring that the code is 
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elegantly integrated into the wider codebase. This 
means that they are spending more time editing 
code and therefore they were seeing less of a 
productivity improvement. This might also explain 
why the positive trend in quality for the higher 
performing developers in contrast to the High AI-
Contributors who saw a negative quality trend.

Limitations and Future Research Directions
While our study provides valuable insights, it also 
has limitations that point to areas for future research:

1.	 Detection Limitations: Our current methods may 
not capture all forms of GenAI usage, particularly 
if developers heavily modify AI-generated code. 
Future studies could employ more granular 
tracking methods to capture the full spectrum of 
AI assistance in development workflows. This 
would require far more detailed telemetry and 
reporting from LLM providers regarding usage of 
their products than is currently available. Once 
this is understood, the industry can begin to 
understand if these more limited assistive use 
cases warrant the significant additional cost of 
GenAI over and above what is already available 
in most modern IDEs.

2.	 Low Code Acceptance Rates: Further research 
is needed to understand the reasons behind 
the low acceptance rates of GenAI-authored 
code. The use case that would maximise 
GenAI’s benefit is that it would compose 
performant, accurate, and appropriate high-
quality code that developers can confidently 
commit to version control systems. This would 
maximise GenAI’s performance impact. This 
study shows that this is not what is observed 
in practice. We need to understand why.

3.	 Long-term Impacts: This study provides 
a narrow time-range of GenAI’s impact, 
but longitudinal studies are needed to 
understand how these effects evolve 
over time and how they influence career 
trajectories and skill development.

4.	 Causality and Self-Selection: The strong 
performance of early adopters raises 
questions about the directionality of the 
relationship between AI tool usage and 
developer performance. Future research 
could employ more sophisticated methods 
to disentangle the effects of tool adoption 
from pre-existing developer characteristics.

The future of software 
development likely lies not 
in a choice between human 
and AI, but in finding the 
optimal synergy between 
developer expertise 
and AI assistance

5.	 Contextual Factors: Further research is needed 
to understand how the impact of GenAI tools 
varies across different types of development 
tasks, project contexts, technologies, 
languages, tenures, seniority levels, roles, etc.

6.	 Optimal Usage Patterns: The superior 
performance of Low AI-Contributors warrants 
deeper investigation into what constitutes 
optimal AI tool usage and how to achieve it 
consistently across development teams

Conclusion

This study provides strong evidence that GenAI 
tools can significantly enhance software developer 
productivity while maintaining or even improving 
code quality. However, the impact is not uniform 
and depends heavily on how these tools are 
integrated into development workflows. The most 
effective approach appears balanced, where AI 
augments rather than replaces human expertise.

The surprisingly low adoption rate of GenAI tools 
among developers highlights both the potential 
for significant future impact as adoption increases 
and the need for a better understanding of 
adoption barriers. As GenAI tools evolve and 
become more prevalent in software development, 
ongoing research will be crucial to understand 
their full impact and develop best practices 
for their integration. The future of software 
development likely lies not in a choice between 
human and AI, but in finding the optimal synergy 
between developer expertise and AI assistance, 
and in effectively scaling the adoption of these 
powerful tools across the developer community.
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Recommendations for Software Development Executives

Based on the study’s findings, software development executives should consider the following when 
implementing GenAI in an enterprise setting:

4.	 Continuous 
Evaluation

Implement ongoing monitoring of both productivity and quality 
metrics. This study used BCE/Day and Aberrant Coding Effort; 
consider adopting these or developing similar metrics suitable for  
your organisation. Monitoring ensures that improvements in one  
area do not come at the expense of another, maintaining a holistic 
view of performance.

5.	 Early Adoption 
Insights

The strong performance of early adopters suggests potential benefits 
in identifying and learning from developers who quickly adapt to new 
tools. Consider mechanisms to share best practices across teams.

6.	 Address Potential 
Skill Gaps

7.	 Optimise Usage 
Levels

8.	 Long-term Impact 
Assessment

Given the performance decline observed in non-AI users, develop 
strategies to ensure all developers can maintain competitiveness as 
AI tools become more prevalent.

Given that Low AI-Contributing Developers showed the best overall 
performance, investigate what constitutes optimal AI tool usage in 
your specific context.

As this study covered a limited timeframe, plan for long-term 
evaluation of GenAI’s impact on productivity, code quality, and 
developer skill evolution.

3.	 Targeted  
Support

Given the varied impacts across developer groups, consider tailored 
approaches for different skill levels and roles. Focus on helping 
developers effectively leverage AI tools within their existing workflows.

1.	 Address Low 
Adoption Rates

Given the extremely low percentage of developers committing 
unaltered GenAI-authored code, investigate specific barriers to 
effective use. Consider surveying developers to understand the 
challenges in integrating AI-generated code into existing codebases.

2.	 Balanced 
Integration 
Approach

Develop guidelines that encourage GenAI use while emphasising  
the importance of human oversight. The study suggests an  
optimal “sweet spot” where AI augments rather than replaces  
human expertise.

These recommendations focus on pragmatic steps based directly on this study’s findings, aiming to 
maximise the benefits observed while addressing potential challenges in GenAI adoption and use.
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Appendices 

Appendix A
Ways in which initially GenAI authored code becomes human authored.

BECOMES HUMAN-AUTHORED  
(I.E. IMPACTS STYLE & STRUCTURE)

REMAINS AI-AUTHORED  
(I.E. DOES NOT IMPACT STYLE & STRUCTURE)

Changes in control flow: Modifying loops, 
conditionals, branching statements Simple comments, variable renaming

Adding or removing function calls: Introducing 
new functionality or removing unnecessary code Changing variable names within functions

Altering data structures: Switching array/list 
implementations, modifying object hierarchy Formatting changes, whitespace adjustments

Introducing custom logic: Implementing unique 
algorithms or data processing steps Adding documentation comments

Changing variable types: Modifying data types 
of variables and function arguments Changing variable names without type changes

Combining or splitting code blocks: Merging or 
dividing functions, conditional statements Reordering lines of code within a block
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Appendix B
Calculations of the impact of a 4% increase in productivity that maintains quality based on the BlueOptima 
Global Benchmark.

VARIABLE VALUE COMMENTS

Number of developers 250

BGB Universe Avg. BCE/Day 1.9

BGB Universe Avg. Cost/Day 432

BGB Universe Avg. Cost/BCE $227

Number of working days  
in a calendar 255

Total BCE 121125 (BGB Universe Avg. BCE/Day * Number of working 
days in a calendar * Number of developers)

4% increase in Avg. BCE/Day 1.976

Improved Cost/Day after 4% 
increase in Avg. BCE/Day $219

Capacity cost saving $2,012,538
(Total BCE * (BGB Universe Avg. Cost/Day – ((BGB 
Universe Avg. Cost/Day * BGB Universe Avg. BCE/
Day) / 4% increase in Avg. BCE/Day))
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