
REPORT

The Impact of Generative AI
on Software Developer Performance

© BlueOptima Limited 2005–2024. All Rights Reserved

This study is the largest and most comprehensive
to date investigating the impact of Generative AI
(GenAI) tools on software developer performance,
addressing productivity, code quality, and adoption
patterns. Using a mixed-method approach
combining quasi-experimental design and Code
Author Detection (CAD) analysis, we examined
218,354 professional software developers
working in an enterprise setting, covering about
880 million commits extracted from mid-2022 to
mid-2024. Despite the large sample, only 2,062
developers consistently committed GenAI-authored
code, demonstrating that very few developers
exploit GenAI such that significant rework of the
code provided is not required before committing
it to source code repositories. Employing two
independent methodologies to control for GenAI
usage effects, we demonstrate that GenAI tools
enhance developer productivity by approximately
4%, while generally maintaining code quality.
Remarkably, developers with moderate GenAI
usage emerged as the highest overall performers,
suggesting an optimal balance between AI
assistance and human expertise. The study also
uncovered unexpected adoption patterns, with
64% of licensed GenAI users employing GenAI
before officially being granted licences. These
results show that GenAI use does not significantly
reduce code quality and suggest potential for GenAI

Abstract

The Impact of
Generative AI on
Software Developer
Performance

to improve software development productivity.
However, the low commit rate of GenAI authored
code unaltered by human software engineers
underscores the need for further research
into implementation strategies and long-term
impacts of GenAI in software engineering.

“Why are you still here, I thought we got
a Copilot subscription?”

Page 2 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Introduction

The software development industry has generated
a great deal of anticipation and expectation
regarding the integration of Generative AI (GenAI)
technologies. These advancements, particularly
through Large Language Models (LLMs), present
the possibility of significantly enhancing developer
productivity, improving code quality, and reducing
costs by automating routine and repetitive tasks.
GenAI tools can generate code snippets, complete
code blocks, and refactor existing codebases based
on high-level instructions, which could streamline
the development process.

Historically, innovations such as compilers in the
1950s and Integrated Development Environments
(IDEs) in the 1990s have substantially boosted
developer efficiency and code reliability (Levy
& Prlić, 2022). Similarly, GenAI is expected to
reduce the cognitive load on developers, enabling
them to focus on more complex and strategic
tasks (Forsgren, Humble, & Kim, 2018). However,
integrating GenAI tools also introduces challenges,
such as the need for adequate training, the
risk of over-reliance on AI-generated code,
and ensuring the security and quality of the
code authored by GenAI (Guan et al., 2023).

Before getting into a detailed account of the impact
of GenAI on software developer performance, it is
important to understand the broader context of AI’s
impact on productivity. Recent studies and analyses
suggest that, despite significant investments and
widespread adoption claims, the economic impact
of AI technologies, including GenAI, remains limited
and difficult to quantify. For instance, a report
by The Economist highlights that the anticipated
revolution in productivity driven by AI technologies
has not yet materialised in general economic
measures, raising questions about the real-world
effectiveness of these tools (The Economist, 2024).

The advent of Generative AI (GenAI) has already
significantly impacted various industries, one of
the industries likely to be impacted significantly
appears to be software development. GenAI
tools, such as Microsoft Copilot, leverage machine
learning to assist developers by automating the
initial drafting of code, providing code explanations,
and identifying potential bugs in source code or
other issues. While some industry participants,
particularly those selling Generative AI solutions,
suggest that the integration of AI into the
software development life cycle has the potential
to substantially enhance productivity and code
quality. Other industry commentators suggest that

the inclusion of GenAI into software development
workflows may impair software developer
performance, often anticipating that the review and
correction of inappropriate and or poor quality code
will ultimately impair progress. However, the actual
impact of these tools on developer performance
remains a subject of empirical investigation.

Previous studies have demonstrated mixed
results regarding the impact of GenAI on software
development. For instance Peng et al. (2023)
found that developers using Copilot completed
tasks 55.8% faster than a control group.
Similarly, Almeida et al (2024) reported that AI
tools improved the detection of code smells in
code review by 40% and faster than manual
review, resulting in higher overall code quality.
Chatterjee et al. (2024) use artificial coding tasks
to evaluate the impact on developer performance
in an enterprise setting and generally describe
improved performance and satisfaction though
decline to quantify this specifically. However,
these studies primarily relied on self-reported
data and lacked rigorous experimental controls,
making it difficult to generalise the findings.

The integration of AI tools in software development
has raised concerns about potential trade-offs
between productivity and code quality. Some
researchers have suggested that while AI
might increase the speed of code production, it
could potentially lead to lower code quality or
increased technical debt (Sobreira et al., 2023;
Lwakatare et al., 2022). This concern stems
from the possibility that developers might rely
too heavily on AI-generated code without fully
understanding or optimising it, or that the pressure
to deliver code quickly might overshadow quality
considerations. However, others argue that AI
tools, when used appropriately, could enhance both
productivity and quality by allowing developers
to focus on higher‑level design and problem-
solving tasks (Rahman et al., 2023). This study

This study is the largest and
most comprehensive to date
investigating the impact of
Generative AI (GenAI) tools on
software developer performance

Page 3 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

provides empirical evidence to address this
debate and assess the actual impact of GenAI
tools on both productivity and code quality
in real-world development environments.

A fundamental shortcoming of prior research is
an incomplete and inadequate account of software
developer performance. This paper addresses this
shortcoming by evaluating software development
performance as comprising three components:
productivity, quality, and cost. These are the primary
considerations of any engineering endeavour,
and software engineering is no exception to the
challenge of simultaneously optimising these
three fundamental dimensions of performance.

The measure of Productivity, Coding Effort, is a
measure of the intellectual effort expended by a
developer delivering a single change into the source
code of an application. Coding Effort is calculated
by statistically evaluating every source code change
made by developers in terms of up to 36 static
source code metrics measuring various aspects of
Volume, Complexity, and Interrelatedness while
considering the context worked in (e.g. a complex
legacy software component or a brand new
project). Coding Effort is evaluated based on the
changes committed into version control systems on
a per commit per file basis, which is called Actual
Coding Effort (ACE). As a measure of Productivity,
Billable Coding Effort per developer per day is a
measure of the average amount of Coding Effort

Productivity Quality Cost

Performance

We analyse the impact of
GenAI on software developer
performance, focusing on
Productivity (measured as
Billable Coding Effort per
Day, BCE/ Day) and Quality
(measured as the percentage
of Aberrant Coding Effort,
% Aberrant BCE)

an individual developer delivers per day To obtain
the target variable of this paper (BCE/day), Billable
Coding Effort is adjusted for stored changes and
prorated across working days (i.e. adjusted for
weekends and holidays) to get the average effort
per day, or BCE/day. The range for BCE/day ranges
from 0 to 5.5. This means that the maximum
coding effort a developer can obtain on a single
day is 5.5 hours. This is a populational maximum,
based on empirical studies, that accounts for the
time that top decile developers would spend on “at
keyboard programming” aspects of their role. This
excludes meetings, breaks, and non-coding work.

The measure of Quality, Aberrant Coding Effort,
is a measure of the quality, more specifically
maintainability, of source code. The aberrancy of
source code provides an objective account of how
easy it is for a developer who is naive to the code
to reach a level of understanding of the code so that
they can extend, alter, or improve it. It is calculated
by evaluating the proportion of code that is aberrant
relative to the codebase in which it sits across more
than 20 static source code metrics. Code is flagged
as aberrant when it violates thresholds that have
been benchmarked across an enterprise’s software
estate and BlueOptima’s Global Benchmarks. The
percentage represents the ratio of coding effort
devoted to unmaintainable changes so a lower
percentage is more desirable. It considers the
maintainability of a file before changes are made,
so no penalty is given for changes in an already
unmaintainable file unless they push a static metric
further past the threshold of un-maintainability.

Page 4 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

“What are the effects of GenAI use on developer productivity and quality?”

Impact of GenAI Use on Selected Developers in Selected Teams: We use
a quasi-experimental prospective design to compare the performance of
developers identified as being granted access to GenAI tools (Experimental
Group) with those who were not (Control Group). Our aim is to determine whether
GenAI use leads to observable differences in productivity and quality.

“Were developers accurately allocated to GenAI and control groups?”

Control and Representativeness of Selected Developers in Teams Approach: By
applying an automated approach to detecting the use of GenAI by those developers
allocated to the experimental group, we investigate the extent to which the developers
were appropriately allocated to these groups. This includes assessing whether the
selected developers commit GenAI-authored code before the date at which they
were allocated GenAI tool licences or if they commit GenAI-authored code at all

“How do different levels of GenAI usage (e.g. high, low, none) influence
developer performance?”

Drivers of Differences in Productivity and Quality: We then explore the relationships
between GenAI usage levels and developer performance. Specifically, we examine the
relationship between high, low, and no GenAI usage on performance and how these
insights can inform more effective utilisation of AI tools in software engineering.

For the purposes of the relatively short duration
of this study, Cost, in the context of software
development performance, is the fully loaded
cost of employing software developers. This is
assumed to be a constant as individual developers
are only considered if they are continuously
employed by the software development
organisation for the duration of the study.

This study also addresses prior research’s
shortcomings in isolating the impact of using GenAI

versus control groups who do not have access to the
technology. We employ a robust quasi‑experimental
design and leverage BlueOptima’s Code Author
Detection (CAD) capabilities. We analyse the impact
of GenAI on software developer performance,
focusing on Productivity (measured as Billable
Coding Effort per Day, BCE/Day) and Quality
(measured as the percentage of Aberrant Coding
Effort, % Aberrant BCE).

The study is structured around four key questions:

This study, which is the most comprehensive and large-scale study of its nature that we are aware
of, allows us to provide a robust and detailed understanding of the impact of GenAI on software
development, highlighting both its potential benefits and the complexities involved in its implementation.

“What are the trends in GenAI usage and its impact on productivity
and quality across a large developer population?”

Observations Across Large Developer Populations: We extend our analysis to a larger
cohort of developers and evaluate those who have, through the course of their normal
work commenced using GenAI in a post hoc quasi-experimental design. This broader
analysis helps us understand the general trends in GenAI usage and its impact on the same
productivity and quality metrics across a much larger and more diverse developer population.

1

2

3

4

Page 5 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Method

Study Design
This study employs a mixed-method approach,
utilising both quasi-experimental design and
BlueOptima’s Code Author Detection (CAD) analysis
to evaluate the impact of Generative AI (GenAI) on
software developer performance. BlueOptima’s Code
Author Detection is a Machine Learning technology
designed and developed by BlueOptima to detect AI-
Contributed source code. This technology identifies
code, at the method level, that has been authored
by Machine Learning techniques, such as Generative
AI (e.g. OpenAI ChatGPT, Meta CodeLlama, Google
Gemini etc.), and committed to version control
repositories without material editing from the
committing developer. CAD does not capture IDE-
based “autocomplete” contributions of ML/AI in cases
where developers subsequently adjust and edit
the autocompleted code making it stylistically and
structurally unrecognisable as ML authored code.
CAD does not seek to identify this usage of Machine
Learning generated code as it is a less impactful
assistive use case rather than a direct replacement
of human developer effort that is not radically
dissimilar to existing code completion technologies.
See Appendix A for examples of the types of
change that makes GenAI code Human Authored.

The analysis is conducted in two parts:

1.	 Licence-based Group Comparison: We
use ANOVA to compare developers officially
granted access to GenAI tools (Experimental
Group) with those who were not (Control
Group) within teams of software engineers.

2.	 CAD-based Group Comparison: We use
BlueOptima’s CAD capabilities to independently
detect AI-authored code and assess the
impact of GenAI usage on a larger population
of developers who have used GenAI and
compare them to those that have not over
the same period of time using ANOVA.

Participants

Licence-based Group Comparison: This method
involved identifying a group of developers to be
allocated GenAI licences and identifying a control
group corresponding with this selection of GenAI
users.

Experimental Group (EG-ALL): The developers
(N=3268) included in the study were identified
by those that manage them in their software

development organisation, in some cases
they may have volunteered to receive the
GenAI licences which were then approved
by those managing the GenAI evaluation in
their organisation. These developers belong
to 317 software engineering teams within
28 Organisations across 10 Enterprises.

Control Group (CG-ACT-DEV): Active developers
matching the activity criteria of EG-ALL but without
GenAI tool licences (N = 3168) were sampled
from 418 teams of software engineers across
40 Organisations within the same 10 Enterprises
as the Experimental Group (EG-ALL) developers.

CAD-based Group Comparison: CAD is run
over the activity of 218,354 professional software
developers from July 2022 to May 2024 across

218,354
Total developers
analyzed

432,058
Source code
repositories

2,062
Developers
committing
GenAI-authored
code

July 2022 – May 2024

Active Developers in
Pre and Post Periods

20,548
Frequently committing developers

software
development
database

Study

Page 6 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

432,058 source code repositories operated by
the software development organisations within
32 commercial enterprises. This population was
reduced to 77,338 to include those developers
that had activity in both the pre-treatment and
post‑treatment from their first ML-authored
commit date to May 2024. This ensures that we
are considering developers who have a tenure
of activity over duration of the comparison. To
further refine this population to more broadly active
developers they were required to have committed
for at least 6 months in each period, and to be
active within 45 days of their ML-authored commit
date. This refinement resulted in 47,881 developers
in the pre-period and 28,525 in the post-period.

Next, only those developers who met the above
criteria in both periods were selected, reducing the
final population to 20,548 frequently committing
developers. While this is a significant reduction
in developer population given the initial activity
of 218,354 developers, this allows us to be
confident of the active development role of the
final 9.4% of these developers on the relevant
codebases over the relevant time periods.

Finally, CAD was run across the entire original
population and identified 2,062 developers who

had committed GenAI authored code within
this refined group, allowing us to categorise the
remaining 18,486 developers of the final 20,548
developers as the Zero-AI group. It is important
to point out that unlike the Licence-based group,
we cannot know the extent to which this group
of 20,548 developers have had GenAI tools made
available to them. While a number of them may
have used the various free offerings available on
the internet and others may have been officially
permitted to use GenAI and been granted
licences, others may have been prohibited from
using GenAI as a matter of corporate policy.

To further refine those developers using GenAI
the percentage of ML-authored Actual Coding
Effort (ACE) was computed for the CAD
developers to assess their degree of GenAI
usage. Developers with an ML-authored ACE
percentage higher than the median value
were categorised as High AI-Contributing
Developers, while those with a lower percentage
were categorised as Low AI‑Contributing
Developers. This split the CAD group into two
equal categories of 1,031 developers each.

Thus, three distinct developer groups were formed
for the analysis as set out in the table below.

Developer Group Description Sample
Size (N)

High AI-Contributing
Developers

Developers with above average levels of AI-generated
code in their commits 1031

Low AI-Contributing
Developers

Developers with below average levels of AI-generated
code in their commits 1031

No AI-Contributing
Developers Developers not committing any AI-generated code 18,486

Figure 1: This table shows the sample sizes used in the CAD-based Group Comparison

Page 7 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Identifying Pre and Post GenAI Usage
The validity of both approaches in isolating
the impact of GenAI is to be able to accurately
isolate the point at which developers commenced
using GenAI. Below, we describe the point at
which GenAI is used by the treatment group
and how we have selected an appropriate time
frame of observation for the control group.

Licence-based Group

The approach to identifying the transition point
for the Licence-based Group comparison is
straightforward in that it involves taking the date at
which a particular subgroup or team were allocated
their licences. Once this is done the comparison is
made to members of the same subgroup or team
who were not allocated licences as a control group.
The time-frames considered are set out below.

Experimental Group (EG-ALL): 6 months
before and after the date of licence allocation
for a developer in this group, respectively.

Control Group (CG-ACT-DEV): Since this group
was not provided a licence to Gen AI, this
date was approximated using the median
date of licence allocation among the EG-ALL
developers. This ensures a fair comparison of
the CG-ACT-DEV and EG-ALL groups. 6 months
before and after this median date is the Pre
and Post period for the CG-ACT-DEV group.

CAD-based Group Comparison

BlueOptima’s CAD capabilities observed the initial
usage of Gen-AI code in January 2023. To assess
the pre-Gen-AI performance of these developers, a
six-month time period from July 2022 to December
2022 would be considered the pre-period. July 2022
is the lower bound for performance assessment
in the pre-time frame for all three categories of
developers (High, Low, and No-AI), and May 2024
is the upper bound. Each developer is considered
within this upper and lower bound as follows.

Developer Group Pre-treatment Period Post-treatment Period

High AI-Contributing
Developers

From July 2022 to the date of the first
ML‑authored commit detected through CAD
for a developer

From the first ML-authored
commit date to May 2024

Low AI-Contributing
Developers

From July 2022 to the date of the first
ML‑authored commit detected through CAD
for a developer

From the first ML-authored
commit date to May 2024

No AI-Contributing
Developers

Date is approximated as the median of the
first ML-authored commit date across the
High and Low-AI developer population. So
July 2022 to this median date would be the
pre-period for this group

From the median
ML‑authored commit date
for this group to May 2024

To keep the Licence-based Group Comparison ANOVA comparable with the CAD-based Group
Comparison ANOVA the High AI-Contributing and Low AI-Contributing are combined for this analysis.

Statistical Analysis
1.	 Quasi-Experimental Design ANOVA: We conducted a two-way ANOVA to assess the main and

interaction effects of group (Experimental vs. Control) and timeframe (Pre vs. Post) on productivity
and quality metrics.

Figure 2: This table defines the different groups of developers using tn the CAD-based
Group comparison

Page 8 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Productivity Quality

Developer
Group

Pre BCE/
Day

Post BCE/
Day

%
Change

Pre
Aberrancy %

Post
Aberrancy %

%
Change

ML 2.32 2.42 +4.09% 5.95 5.96 +0.09%

Zero-AI 1.92 1.89 -1.81% 6.28 6.33 +0.89%

CG-ACT-DEV 2.12 2.01 -5.12% 6.393 6.390 -0.05%

EG-ALL 2.01 2.09 +3.99% 6.24 6.08 -2.63%

2.	 Licence-based Group Comparison Validation Chi-Square analysis: We applied a Chi-Squared
analysis on the Licence-based Group once CAD was used to analyse the commits made by the
developers considered in this analysis. This analysis is to establish the extent of GenAI usage as
observed from their committed code and the timing of GenAI usage by the treatment group.

	 The Chi-Squared test was used to analyse the association between early adoption
of AI tools (before official licence assignment) and improvement in performance
(measured as Avg. BCE/Day). The test results show a p-value of 0.35, indicating no
significant association between early adoption and performance improvement.

3.	 T-Tests: To further explore the performance differences and usage of GenAI in the CAD-based
Group Comparison independent sample t-tests were conducted to compare the productivity and
quality between High, Low, and No AI-Contributing Developers for both pre and post timeframes.

The percentage changes were calculated as follows:

Productivity Quality

Developer
Group

Pre BCE/
Day

Post BCE/
Day

%
Change

Pre
Aberrancy %

Post
Aberrancy %

%
Change

High AI-Contrib. 2.01 2.18 +8.4% 5.99 6.01 +0.33%

Low AI-Contrib. 2.59 2.64 +1.93% 5.92 5.91 +0.16%

No AI-Contrib. 1.92 1.88 -2.08% 6.27 6.33 +0.9%

  Percentage Change = ( Post–Pre  ) x 100
Pre

These statistical analyses enable us to quantify the impact of GenAI on software developer performance
and draw conclusions regarding productivity and quality improvements.

Figure 3: Productivity and quality metrics compared across 4 developer groups: ML – developers with
GenAI access who made changes identified as GenAI, Zero-Al – developers with GenAI access who made
changes identified as GenAI, CG-ACT-DEV – the control group with no GenAI access, EG-ALL – Developers
who had access to GenAI

Figure 4: Productivity and quality metrics compared across 3 developer groups: High AI-
Contrib. – developers with above average levels of AI-generated code in their commits,
Low AI-Contrib. – developers with below average levels of AI-generated code in their
commits, No AI-Contrib. - developers not committing any AI-generated code

Page 9 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

7.5% 7.0% 6.5% 6.0% 5.5% 5.0%

1.9

2.0

2.1

2.2

2.3

2.4

Quality (% AbCE)

Pr
od

uc
tiv

ity
 (B

C
E/

D
ay

)

Quality vs Productivity – BCE/day

Zero-AI

CG-ACT-DEV

EG-ALL

Pre

Pre

Pre

Pre

Pre

Post

Post

Post

Post

PostML

ANOVA Results Productivity (BCE/Day) Quality (% Aberrant Coding Effort)

Licence-based Group Comparison ANOVA

Main Effect of Group F = 28.98, p < 0.00001 F = 11.97, p < 0.001

Main Effect of Timeframe F = 9.96, p < 0.01 F = 4.61, p < 0.05

Interaction Effect
(Group*Timeframe) F = 17.87, p < 0.0001 F = 1.03, p > 0.31

CAD-based Group Comparison ANOVA

Main Effect of Group F = 959.14, p < 0.00001 F = 31.51, p < 0.00001

Main Effect of Timeframe F = 2.26, p > 0.13 F = 4.18, p > 0.45

Interaction Effect
(Group*Timeframe) F = 11.44, p < 0.001 F = 2.35, p > 0.57

Results

The means for the four groups of developers included in the quasi-experimental analysis are provided below.

The results of the Licence-based and CAD-based quasi-experimental grouping ANOVAs are provided below.

Figure 6: Anova results across the following comparisons:
1) Licence-based: Main Effect of Group – developers granted access to GenAI compared
with those not granted access, Main Effect of Timeframe – the pre and post timeframes,
Interaction Effect – the combined comparison
2) CAD-based: Main Effect of Group – developers with AI-generated Code and
compared with those who haven’t had any AI-generated code, Main Effect of Timeframe
– the pre and post timeframes , Interaction Effect – the combined comparison

Figure 5: Productivity and quality metric changes compared across 4 developer groups: ML – developers
with GenAI access who made changes identified as GenAI, Zero-Al – developers with GenAI access who
made changes identified as GenAI, CG-ACT-DEV – the control group with no GenAI access, EG-ALL –
Developers who had access to GenAI

Page 10 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Licence-based Group Comparison ANOVA
The Licence-based Group Comparison ANOVA
aimed to compare the performance of developers
officially granted access to GenAI tools
(Experimental Group) with those who were not
(Control Group).

Productivity (BCE/Day): Developers in the
Experimental Group (EG-ALL) showed a notable
improvement in productivity, increasing from 2.011
BCE/Day in the pre-GenAI period to 2.092 BCE/
Day in the post-GenAI period, a 3.99% increase.
In contrast, the Control Group (CG-ACT-DEV)
experienced a decrease in productivity from 2.116
BCE/Day to 2.007 BCE/Day, a decline of 5.12%.
Within the Experimental Group, the ML Group
saw an increase from 2.32 BCE/Day to 2.42
BCE/Day, while the Zero-AI Group observed a
decrease from 1.92 BCE/Day to 1.89 BCE/Day.

Quality (% Aberrant Coding Effort): In terms
of quality, the Experimental Group exhibited a
slight improvement, with a decrease in Aberrant
Coding Effort from 6.24% to 6.08%, translating
to a 2.63% reduction in aberrancy. The Control
Group’s quality remained relatively stable, with a
minor reduction from 6.393% to 6.390%, equivalent
to a 0.05% decrease. Within the Experimental
Group, the ML Group’s aberrancy increased
from 5.95% to 5.96%, whereas the Zero-AI
Group saw an increase from 6.28% to 6.33%.

The ANOVA results indicated significant
differences in productivity and quality between
the Experimental and Control groups. The Main
Effect of Group (Experimental vs. Control) on
productivity was significant (F = 28.98, p <
0.00001), and the Main Effect of Timeframe (Pre vs.
Post) was also significant (F = 9.96, p < 0.01). The
Interaction Effect between Group and Timeframe
was significant as well (F = 17.87, p < 0.0001),
suggesting that the productivity improvements
were notably influenced by the use of GenAI tools.

In terms of quality, the Main Effect of Group was
significant (F = 11.97, p < 0.001), while the Main
Effect of Timeframe was also significant (F =
4.61, p < 0.05). The Interaction Effect between
group and timeframe was not significant (F
= 1.03, p > 0.31), indicating that the quality
changes were relatively stable over time.

CAD-based Group Comparison ANOVA
The CAD analysis ANOVA evaluated the effects
of GenAI-authored commits on productivity and
quality by comparing developers who used GenAI
(ML group) with those who did not (Zero-AI group).

These results independently
confirm the positive impact
of GenAI on productivity
observed in the licence-
based comparison while also
showing that using GenAI
tools does not negatively
impact code quality

Productivity (BCE/Day): Developers in the ML
group experienced a 4.09% increase in productivity,
from 2.32 BCE/Day to 2.42 BCE/Day. In contrast,
the Zero-AI group saw a 1.81% decline in
productivity, from 1.92 BCE/Day to 1.89 BCE/Day.

Quality (% Aberrant Coding Effort): In terms
of quality, the ML group observed a slight drop,
with aberrancy increasing from 5.95% to 5.96%,
a 0.09% rise. The Zero-AI group also saw a minor
degradation in quality, with aberrancy increasing
from 6.28% to 6.33%, a 0.89% increase.

The ANOVA results indicated significant differences
in productivity between the groups. The Main Effect of
Group (ML vs. Zero-AI) on productivity was significant
(F = 959.14, p < 0.00001), and the Interaction Effect
between group and timeframe was also significant
(F = 11.44, p < 0.001). For quality, the Main Effect of
Group was significant (F = 31.51, p < 0.00001), but
the main effect of the timeframe was not significant
(F = 4.18, p > 0.45). The Interaction Effect between
group and timeframe was not significant (F = 2.35,
p > 0.57), indicating that the quality changes were
consistent across both groups over time.

These results independently confirm the positive
impact of GenAI on productivity observed in the
licence-based comparison while also showing
that using GenAI tools does not negatively impact
code quality.

Licence-based Group Validation
Chi‑Square Analysis
Extent of GenAI Usage: Of the 3268 developers in
the experimental group, 392 (12%) were found to
commit ML-authored code. This indicates a notable
subset of developers actively using GenAI tools.

Page 11 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Timing of GenAI Usage: Among the 394 developers
who committed ML-authored code, 252 (64%) had
their first ML-authored commit date well before the
official date of Copilot licence assignment. However,
the Chi-Squared test indicates that there is no
significant association between early adoption and
performance improvement, with a p-value of 0.35.

Statistical Validation: The Chi-Squared test
was used to analyse the association between
early adoption of AI tools (before official
licence assignment) and improvement in
performance (measured as Avg. BCE/Day).

The test results show a p-value of 0.35, indicating
no significant association between early adoption
and performance improvement.

Specifically, 122 (48%) early adopters saw an
improvement in performance, compared to 130
(52%) who did not. In contrast, 1559 (51%)
developers who did not adopt early showed
improvement, compared to 1457 (49%) who did not.

T-Tests for MLCAD Groupings
The means of the High, Low, and No-GenAI users
saw the following results first shown graphically
and then with specific values as a table.

7.5% 7.0% 6.5% 6.0% 5.5% 5.0%

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Quality (% AbCE)

Pr
od

uc
tiv

ity
 (B

C
E/

D
ay

)

Quality vs Productivity – BCE/day

Low

Zero-AI

Pre

Pre

Pre

Pre

Post

Post

Post

PostHigh

Figure 7: Productivity and quality metrics compared across 3 developer groups: High
AI‑Contrib. – developers with above average levels of AI-generated code in their commits,
Low AI-Contrib. – developers with below average levels of AI-generated code in their
commits, No AI-Contrib. – developers not committing any AI-generated code

Page 12 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Table 3: T-Test Results for Pre and Post Timeframes

Group
Comparison

Pre-Timeframe
P-value

Post-Timeframe
P-value

Productivity
(BCE/Day)

Quality
(Aberrancy %)

High vs. Low 7.103e-56 2.268e-36 Significant Not significant

High vs. None 0.000725 1.766e-21 Significant Significant

Low vs. None 4.120e-124 2.570e-154 Significant Significant

The t-test analyses revealed that high and low
AI-contributing developers are significantly more
productive than non-users in both pre- and post-
timeframes. High AI-contributing developers
showed higher productivity compared to low
AI-contributing developers. In terms of quality,
high AI-contributing developers maintained
better quality compared to non-users, but
there was no significant difference between
high and low AI-contributing developers.

Summary of Findings
The results of the Licence-based and CAD-
based quasi-experimental grouping ANOVAs
indicate that Generative AI (GenAI) positively
impacts software developer performance.

In the Licence-based Group Comparison,
developers with GenAI access showed a
3.99% increase in productivity, while those
without it saw a 5.12% decrease. Quality
improved slightly for the Experimental Group
with a 2.63% reduction in aberrancy, while the
Control Group’s quality remained stable.

The CAD-based Group Comparison ANOVA further
supported these findings. Developers who used
GenAI experienced a 4.09% increase in productivity,
while those who did not use GenAI saw a
1.81% decline. In terms of quality, both groups
showed minimal changes, with the GenAI users

experiencing a slight 0.09% increase in aberrancy
and the non-users showing a 0.89% increase.

The significant ANOVA results from both analyses
suggest that GenAI tools notably enhance
productivity without compromising code quality.

Subsequent T-Tests on the CAD data revealed
that High AI-Contributing Developers
experienced an 8.4% increase in productivity,
and Low AI-Contributing Developers saw
a 1.93% increase, while No AI-Contributing
Developers saw a 2.08% decline. Quality
changes were minor across all groups.

T-Tests confirmed that High and Low AI-
Contributing Developers were significantly
more productive than non-users, with high
contributors maintaining better quality.
However, differences in quality between high
and low contributors were not significant.

These findings consistently demonstrate the
positive effect of GenAI on productivity across
different analytical approaches, while also
indicating that code quality is maintained
or slightly improved with GenAI use.

T-Tests were then used to compare productivity and quality between High, Low, and No AI‑Contributing
Developers for both pre and post timeframes. The results are summarised in Table 3.

Figure 8: T-test comparison on the groups: High – developers with above average levels
of AI-generated code in their commits, Low – developers with below average levels of AI–
generated code in their commits, None – developers not committing any AI-generated code

Page 13 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Discussion

This comprehensive study provides critical insights
into the impact of Generative AI (GenAI) tools on
software developer performance. It addresses
key questions about productivity, code quality,
and the complexities of AI integration in software
development workflows. Our findings reveal a
complex landscape where the benefits of GenAI
are significant but vary based on usage patterns
and individual developer characteristics.

Widespread Analysis and Limited
GenAI Usage
One of the most striking findings of our study
is the relatively low incidence of GenAI code
being committed without significant rework
by developers. In the case of the License-
based comparison group, 3,268 were granted
access to and officially permitted to use GenAI,
and yet only 394 (12%) committed multiple
instances of code authored by GenAI that were
not materially altered by those developers.

Despite analysing the activity of over 218,000
developers in the GenAI-based comparison
group, only 2,062 were found to have material
and consistent contributions to version control
systems of GenAI-authored code that have not
been significantly edited and altered by the
developer contributing it. This represents less
than 1% of the developer population analysed.

It may be the case that the enterprises for which
a number of these 218,000 developers work
may prohibit the use of LLM due to information
security concerns (Zhu et al., 2024). Whatever
the permissiveness of the enterprises considered
in terms of the use of GenAI it is clear that
the integration of GenAI tools into software
development practices is still in its early stages
and that the LLMs producing the code have not
achieved a level of proficiency in accommodating
the context of the target codebase nor
understanding the desired requirements to not
require further manipulation by developers.

This raises important questions about the
nature of the efficiency that is being delivered
by GenAI. Specifically, it highlights the fact
that while GenAI can compose source code,
currently, this source code requires significant
alteration before it is appropriately assimilated
into a wider codebase to be committed to version
control systems. This suggests that if wider use
of GenAI is in fact happening in enterprises the

One of the most striking
findings of our study
is the relatively low
incidence of GenAI
code being committed
without significant
rework by developers

use cases must primarily relate to scenarios
other than largely autonomous composition
of source code capable of delivering value
to end users in Production environments.

Impact on Productivity and Quality:
Licence-based vs. CAD-based Analysis
Our study employed two complementary
approaches to assess the impact of GenAI: a
licence-based group comparison and a Code
Author Detection (CAD) based analysis.

The licence-based quasi-experimental ANOVA
revealed a clear positive impact of GenAI tools
on developer productivity. The Experimental
Group (EG-ALL) showed a 3.99% increase in
productivity (BCE/Day) after GenAI implementation,
contrasting with the Control Group’s (CG-
ACT-DEV) 5.12% decrease. Importantly, this
productivity gain did not come at the expense of
code quality; the Experimental Group saw a 2.63%
reduction in Aberrant Coding Effort, indicating
a slight improvement in code maintainability.

The CAD-based ANOVA provided further support
for these findings. In this analysis, developers
who used GenAI (regardless of the level of usage)
experienced a 4.09% increase in productivity,
while those who did not use GenAI saw a 1.81%
decline. This analysis reinforces the positive
impact of GenAI on productivity observed in the
licence-based comparison. Interestingly, the quality
metrics showed minimal increases in Aberrancy
across both groups in the CAD-based analysis,
with Zero-AI users having a higher increase in
Aberrancy (0.89%) as compared to developers
using GenAI (0.09%) (reduction in quality).

Page 14 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

So, the average increase in productivity across
these two approaches is just over 4%. While
this may not seem a radical improvement in
productivity it should be understood that genuine
and enduring improvements in productivity are
harder to achieve than one might expect given the
volatile and unreliable percentage improvements
in measures of productivity that are quoted based
on workflow based metrics (e.g. DORA Lead Time
to Change, (BlueOptima, 2024)). Such measures
are often short-lived as they relate to changing
developer behaviour regarding conventions of
ways of describing, coordinating, and managing
work tasks within and across teams through
task tracking systems. Code artefact measures
of productivity offer a much deeper and reliable
account of productivity. Based on the BlueOptima
Global Benchmark of Productivity, Quality, and
Cost, an enterprise of 250 software developers,
a 4% increase in productivity while maintaining
code quality represents a cost efficiency of over
two million dollars per year (see Appendix B).

These findings from both ANOVAs challenge
the notion that increased productivity through
GenAI use necessarily leads to lower code
quality. Instead, they suggest that GenAI
tools can enhance productivity without
negatively impacting code quality.

Adoption Patterns and Performance
The CAD analysis revealed intriguing patterns in
GenAI adoption and usage. In the licence-based
group, only 12% of developers in the Experimental
Group were found to commit materially unaltered
ML-authored code, suggesting that the majority
either use GenAI tools for line completion,
documentation, or other ways not detectable by
our current methods or primarily as assistive tools
for code ideation and drafting rather than direct
code generation. The prevalence of this across
the much larger CAD-based sample of more than
218,000 was less than 1%, though the availability
of GenAI tools to this entire population is unknown.

The ideal use case for GenAI would be to compose
performant, accurate, and appropriate high-
quality code that developers can confidently
commit to version control systems. This would
maximise GenAI’s performance impact.
However, this study demonstrates that this is
not GenAI’s predominant use case in practice.

Another important finding was that 64% of
developers who committed ML-authored code
did so before their official licence assignment
date. However, the Chi-Squared test indicates

that there is no significant association
between early adoption and performance
improvement, with a p-value of 0.35.

These results raise important questions about
the relationship between developer initiative,
tool adoption, and performance enhancement.
It suggests that the organisations involved in the
study did not have the control they thought they
had over the use of software development tooling
by their developer populations. It also suggests
that those developers more likely to adopt new
tooling of their own volition are more likely to be
able to yield productivity gains from new tooling.

Levels of AI Integration and
Developer Performance
Our analysis of High, Low, and No AI-Contributing
Developers across a larger population provided
further detail to our understanding of GenAI’s
impact. High AI-Contributors saw a 8.4%
productivity increase, while Low AI-Contributors
experienced a 1.93% increase. Conversely, No AI-
Contributors faced a 2.08% productivity decline.
These findings suggest a positive correlation
between AI tool usage and productivity gains,
but also hint at potential diminishing returns,
given developers of higher attainment seeing
less benefit or challenges with very high levels
of AI integration, and given the apparent
tendency to lower quality of this code.

Interestingly, and perhaps most significantly,
Low AI-Contributing Developers emerged as
the highest overall performers, balancing high
productivity with the best code quality. This
suggests an optimal “sweet spot” in AI tool usage
where developers leverage AI assistance to
enhance their work without over-relying on it. It
underscores the importance of human oversight
and judgement in effective AI integration.

Finally, researchers (Dell’Acqua et al., 2023) have
observed a “levelling” effect of Generative AI
outside of the software development industry
whereby less capable operatives in a given work
task see the largest improvements in performance.
This phenomenon is observed in this study too
with the High AI-Contributors showing the most
liberal use of the technology while also showing
the largest improvement in productivity.along
with only a very minor decline in quality.

An alternative account could be simpler and
that the higher performing developers were
less likely to accept code suggestions made
by GenAI without ensuring that the code is

Page 15 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

elegantly integrated into the wider codebase. This
means that they are spending more time editing
code and therefore they were seeing less of a
productivity improvement. This might also explain
why the positive trend in quality for the higher
performing developers in contrast to the High AI-
Contributors who saw a negative quality trend.

Limitations and Future Research Directions
While our study provides valuable insights, it also
has limitations that point to areas for future research:

1.	 Detection Limitations: Our current methods may
not capture all forms of GenAI usage, particularly
if developers heavily modify AI-generated code.
Future studies could employ more granular
tracking methods to capture the full spectrum of
AI assistance in development workflows. This
would require far more detailed telemetry and
reporting from LLM providers regarding usage of
their products than is currently available. Once
this is understood, the industry can begin to
understand if these more limited assistive use
cases warrant the significant additional cost of
GenAI over and above what is already available
in most modern IDEs.

2.	 Low Code Acceptance Rates: Further research
is needed to understand the reasons behind
the low acceptance rates of GenAI-authored
code. The use case that would maximise
GenAI’s benefit is that it would compose
performant, accurate, and appropriate high-
quality code that developers can confidently
commit to version control systems. This would
maximise GenAI’s performance impact. This
study shows that this is not what is observed
in practice. We need to understand why.

3.	 Long-term Impacts: This study provides
a narrow time-range of GenAI’s impact,
but longitudinal studies are needed to
understand how these effects evolve
over time and how they influence career
trajectories and skill development.

4.	 Causality and Self-Selection: The strong
performance of early adopters raises
questions about the directionality of the
relationship between AI tool usage and
developer performance. Future research
could employ more sophisticated methods
to disentangle the effects of tool adoption
from pre-existing developer characteristics.

The future of software
development likely lies not
in a choice between human
and AI, but in finding the
optimal synergy between
developer expertise
and AI assistance

5.	 Contextual Factors: Further research is needed
to understand how the impact of GenAI tools
varies across different types of development
tasks, project contexts, technologies,
languages, tenures, seniority levels, roles, etc.

6.	 Optimal Usage Patterns: The superior
performance of Low AI-Contributors warrants
deeper investigation into what constitutes
optimal AI tool usage and how to achieve it
consistently across development teams

Conclusion

This study provides strong evidence that GenAI
tools can significantly enhance software developer
productivity while maintaining or even improving
code quality. However, the impact is not uniform
and depends heavily on how these tools are
integrated into development workflows. The most
effective approach appears balanced, where AI
augments rather than replaces human expertise.

The surprisingly low adoption rate of GenAI tools
among developers highlights both the potential
for significant future impact as adoption increases
and the need for a better understanding of
adoption barriers. As GenAI tools evolve and
become more prevalent in software development,
ongoing research will be crucial to understand
their full impact and develop best practices
for their integration. The future of software
development likely lies not in a choice between
human and AI, but in finding the optimal synergy
between developer expertise and AI assistance,
and in effectively scaling the adoption of these
powerful tools across the developer community.

Page 16 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

Recommendations for Software Development Executives

Based on the study’s findings, software development executives should consider the following when
implementing GenAI in an enterprise setting:

4.	 Continuous
Evaluation

Implement ongoing monitoring of both productivity and quality
metrics. This study used BCE/Day and Aberrant Coding Effort;
consider adopting these or developing similar metrics suitable for
your organisation. Monitoring ensures that improvements in one
area do not come at the expense of another, maintaining a holistic
view of performance.

5.	 Early Adoption
Insights

The strong performance of early adopters suggests potential benefits
in identifying and learning from developers who quickly adapt to new
tools. Consider mechanisms to share best practices across teams.

6.	 Address Potential
Skill Gaps

7.	 Optimise Usage
Levels

8.	 Long-term Impact
Assessment

Given the performance decline observed in non-AI users, develop
strategies to ensure all developers can maintain competitiveness as
AI tools become more prevalent.

Given that Low AI-Contributing Developers showed the best overall
performance, investigate what constitutes optimal AI tool usage in
your specific context.

As this study covered a limited timeframe, plan for long-term
evaluation of GenAI’s impact on productivity, code quality, and
developer skill evolution.

3.	 Targeted
Support

Given the varied impacts across developer groups, consider tailored
approaches for different skill levels and roles. Focus on helping
developers effectively leverage AI tools within their existing workflows.

1.	 Address Low
Adoption Rates

Given the extremely low percentage of developers committing
unaltered GenAI-authored code, investigate specific barriers to
effective use. Consider surveying developers to understand the
challenges in integrating AI-generated code into existing codebases.

2.	 Balanced
Integration
Approach

Develop guidelines that encourage GenAI use while emphasising
the importance of human oversight. The study suggests an
optimal “sweet spot” where AI augments rather than replaces
human expertise.

These recommendations focus on pragmatic steps based directly on this study’s findings, aiming to
maximise the benefits observed while addressing potential challenges in GenAI adoption and use.

Page 17 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

References
BlueOptima. (2024). DORA lead time to change – useful but
inadequate. Retrieved from https://www.blueoptima.com/
resource/dora-lead-time-to-change-useful-but-inadequate/

Almeida Y, Albuquerque, Filho, Muniz, de Farias Santos,
Perkusich, Almeida H, Perkusich A (2024) AICodeReview:
Advancing code quality with AI-enhanced reviews https://www.
sciencedirect.com/science/article/pii/S2352711024000487

Chatterjee, S., Liu, C. L., Rowland, G., & Hogarth, T. (2024). The
impact of AI tool on engineering at ANZ Bank: An empirical study
on GitHub Copilot within corporate environment. arXiv. https://
doi.org/10.48550/arXiv.2402.05636

Peng, Kalliamvakou, Cihon, Demirer (2023) The Impact of AI on
Developer Productivity: Evidence from GitHub Copilot. arXiv.
https://arxiv.org/pdf/2302.06590

Lwakatare, L. E., Raj, A., Bosch, J., Olsson, H. H., & Crnkovic,
I. (2022). A taxonomy of software engineering challenges for
machine learning systems: An empirical investigation. In Agile
Processes in Software Engineering and Extreme Programming
(pp. 227–235). Springer, Cham. https://doi.org/10.1007/978-3-
030-98103-0_18

Rahman, M. M., Parnin, C., & Williams, L. (2023). Machine
Learning for Software Engineering: A Systematic Mapping. ACM
Computing Surveys, 55(5), 1–36. https://doi.org/10.1145/3526064

Sobreira, V., Durelli, V. H., Peixoto, M., Hui, J., & Treude, C. (2023).
Investigating the Use of ChatGPT for Code Documentation
Generation. In 2023 IEEE/ACM 45th International Conference
on Software Engineering: Software Engineering in Practice
(ICSE-SEIP) (pp. 323-332). IEEE. https://doi.org/10.1109/ICSE-
SEIP58684.2023.00044

The Economist. (2024, July 2). What happened to the artificial-
intelligence revolution? The Economist. Retrieved from https://
www.economist.com/finance-and-economics/2024/07/02/what-
happened-to-the-artificial-intelligence-revolution

Wessel, M., Steinmacher, I., Wiese, I., & Gerosa, M. A. (2022).
Should I strive to be a top developer? Tension and satisfaction
among top developers in open source projects. IEEE Transactions
on Software Engineering, 48(7), 2650–2665. https://doi.
org/10.1109/TSE.2021.3053830

Xu, X., Wang, Y., & Zhang, T. (2022). Exploring the Impact of
Artificial Intelligence on Software Development: Opportunities
and Challenges. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering
(SANER) (pp. 612–616). IEEE. https://doi.org/10.1109/
SANER53432.2022.00071

Zhu, B., Mu, N., Jiao, J., & Wagner, D. (2024). Generative AI
security: Challenges and countermeasures. arXiv. https://doi.
org/10.48550/arXiv.2402.12617v1

Page 18 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

https://www.blueoptima.com/resource/dora-lead-time-to-change-useful-but-inadequate/
https://www.blueoptima.com/resource/dora-lead-time-to-change-useful-but-inadequate/
https://www.sciencedirect.com/science/article/pii/S2352711024000487
https://www.sciencedirect.com/science/article/pii/S2352711024000487
https://arxiv.org/abs/2402.05636
https://arxiv.org/abs/2402.05636
https://arxiv.org/pdf/2302.06590
https://www.researchgate.net/publication/333021812_A_Taxonomy_of_Software_Engineering_Challenges_for_Machine_Learning_Systems_An_Empirical_Investigation
https://www.researchgate.net/publication/333021812_A_Taxonomy_of_Software_Engineering_Challenges_for_Machine_Learning_Systems_An_Empirical_Investigation
https://dl.acm.org/doi/proceedings/10.1145/3526064
https://ieeexplore.ieee.org/document/10172838
https://ieeexplore.ieee.org/document/10172838
https://www.economist.com/finance-and-economics/2024/07/02/what-happened-to-the-artificial-intelligence-revolution
https://www.economist.com/finance-and-economics/2024/07/02/what-happened-to-the-artificial-intelligence-revolution
https://www.economist.com/finance-and-economics/2024/07/02/what-happened-to-the-artificial-intelligence-revolution
https://dl.acm.org/doi/abs/10.1145/3476042
https://dl.acm.org/doi/abs/10.1145/3476042
https://ieeexplore.ieee.org/document/9825863
https://ieeexplore.ieee.org/document/9825863
https://arxiv.org/abs/2402.12617
https://arxiv.org/abs/2402.12617

Appendices

Appendix A
Ways in which initially GenAI authored code becomes human authored.

BECOMES HUMAN-AUTHORED
(I.E. IMPACTS STYLE & STRUCTURE)

REMAINS AI-AUTHORED
(I.E. DOES NOT IMPACT STYLE & STRUCTURE)

Changes in control flow: Modifying loops,
conditionals, branching statements Simple comments, variable renaming

Adding or removing function calls: Introducing
new functionality or removing unnecessary code Changing variable names within functions

Altering data structures: Switching array/list
implementations, modifying object hierarchy Formatting changes, whitespace adjustments

Introducing custom logic: Implementing unique
algorithms or data processing steps Adding documentation comments

Changing variable types: Modifying data types
of variables and function arguments Changing variable names without type changes

Combining or splitting code blocks: Merging or
dividing functions, conditional statements Reordering lines of code within a block

Page 19 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

www.blueoptima.com/

enquiries@blueoptima.com

+44 207 100 8740

w

e

p

+44 207 100 8740

enquiries@blueoptima.com

www.blueoptima.com

p

e

w

Appendix B
Calculations of the impact of a 4% increase in productivity that maintains quality based on the BlueOptima
Global Benchmark.

VARIABLE VALUE COMMENTS

Number of developers 250

BGB Universe Avg. BCE/Day 1.9

BGB Universe Avg. Cost/Day 432

BGB Universe Avg. Cost/BCE $227

Number of working days
in a calendar 255

Total BCE 121125 (BGB Universe Avg. BCE/Day * Number of working
days in a calendar * Number of developers)

4% increase in Avg. BCE/Day 1.976

Improved Cost/Day after 4%
increase in Avg. BCE/Day $219

Capacity cost saving $2,012,538
(Total BCE * (BGB Universe Avg. Cost/Day – ((BGB
Universe Avg. Cost/Day * BGB Universe Avg. BCE/
Day) / 4% increase in Avg. BCE/Day))

Page 20 | © BlueOptima Limited 2005–2024. All Rights Reserved
Report: The Impact of Generative AI on Software Developer Performance

mailto:enquiries%40blueoptima.com?subject=
http://www.blueoptima.com

