
Responding
to the Log4j
vulnerability
In early December 2021, organisations were alerted
that a critical, zero-day exploit had been discovered
in older versions of the widely used Apache Log4j
framework, prompting a frantic scramble to identify
which applications were exposed to the flaw and
ensuring that they were secured.

In this report, we’ll take a look at how organisations
responded to the threat, and how effective their
efforts were in ensuring that their applications
security was not compromised. While mitigation

1 https://logging.apache.org/log4j/2.x/security.html

approaches, other than upgrading, are not
considered, evidence suggests that upgrading
was the preferred approach, especially given that
the mitigation recommendations given by Apache
were deprecated1. Our analysis does not identify
whether the code changes made it into production,
but shows the earliest changes in the version
control system that should precede any releases to
production.

BlueOptima monitors hundreds of thousands of
software developers across some of the world’s
largest enterprises, giving us unique insights into the
reaction of these organisations to the vulnerability.

What is Log4j?
Log4j is a widely used open-source library
commonly used by Java applications.

Developers use Log4j to track what happens in
their software applications or internet services.
It’s essentially a massive log of a system’s or

Page 1 | © BlueOptima Limited 2005-2022. All Rights Reserved
Report: Analysing the Influence of Commit Frequency on the Billable Coding Effort

https://www.blueoptima.com/
https://www.blueoptima.com/

application’s activities. This practice is known as
logging, and it is utilised by developers to keep track
of user issues.2

What were the vulnerabilities
identified?
Between December 9 and December 17 2021, three
vulnerabilities were discovered across different
versions of the Log4j framework, summarised in the
table below:

How wide was the impact?
According to Akamai, since publication of the
vulnerability, they saw multiple variants of the
exploit at a sustained rate of attack traffic of around
2M attempts per hour.3 Akamai has also seen
growing evidence to suggest that the vulnerability
may have been exploited for months, prior to the
publication of the vulnerability.

How have companies
responded?
Using Code Insights from BlueOptima, a leading
Software Composition Analysis (SCA) tool, we have

2 NSCV.gov.uk
3 https://www.akamai.com/blog/security/akamai-recommendations-for-log4j-mitigation

observed a sample of 1000 active repositories to
demonstrate how organisations have responded
to the publication of the vulnerability over the past
three months.

Initial response (first 30 days)
The data shows that upgrade work started the
following Monday from the initial publication
of vulnerability on December 9. This delay can
be partially attributed to the publication being
published late on a Friday, not giving developers the

opportunity to make the necessary changes until the
following week.

After 10 days from first vulnerability detection,~30%
repositories upgraded Log4j to a secure version

After a month from first vulnerability detection,~50%
repositories upgraded Log4j to a secure version

Perhaps the most shocking finding from this
analysis is the number of active repositories running
1.X (End of Life 05/082015) and developers took this
opportunity to upgrade to a 2.X version.

Date Vulnerability Descrip-
tion Severity Possible Impact

Recommended
response (at time
of identification)

Dec
9,2021

Apache Log4j zero-day
exploit discovered for
version pre 2.15.0

CVE-2021-
44228

10/10

It could lead to remote code
execution (RCE) on underly-
ing servers that run vulnerable
applications

Upgrade to 2.15.01

Dec
14,2021

Vulnerability carrying
denial-of-service threat
detected for version
2.15.0

CVE-2021-
45046

9/10

Prone to create denial-of-ser-
vice (DoS) attacks Upgrade to 2.16.0

Dec
17,2021

Vulnerability of infinite
recursion flaw in 2.16.0

CVE-2021-
45105

5.9/10

StackOverflowError that will
terminate the process Upgrade to 2.17.0

1 Other versions were available for Java 6 & 7

Page 2 | © BlueOptima Limited 2005-2022. All Rights Reserved
Report: Analysing the Influence of Commit Frequency on the Billable Coding Effort

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-45046
https://nvd.nist.gov/vuln/detail/CVE-2021-45046
https://nvd.nist.gov/vuln/detail/CVE-2021-45105
https://nvd.nist.gov/vuln/detail/CVE-2021-45105
https://www.blueoptima.com/
https://www.blueoptima.com/

3 month review
• Log4j version pre 2.15.0 was widely being used

across industries till Dec 2021

• From Dec 2021 to Jan 2022,~45% repositories
had action taken

• In the most recent review, ~14% of repos were
upgraded to the most recent 2.17.1

• However there are still over 40% of active
repositories running vulnerabilities 1.X versions

Page 3 | © BlueOptima Limited 2005-2022. All Rights Reserved
Report: Analysing the Influence of Commit Frequency on the Billable Coding Effort

https://www.blueoptima.com/
https://www.blueoptima.com/

Conclusions
Whilst over 50% of repositories have taken action
to ensure that they are mitigating the vulnerabilities
that have been identified, we are clearly able to
see that there are still a high volume active of
repositories who are highly likely to have taken
limited to no action three months on from the initial
identification of the vulnerability, leaving their
applications and customers at risk from malicious
parties.

One of the more concerning findings is that even
whilst a significant proportion of repositories were
upgraded in a relatively short period of time after
the initial vulnerability was identified, many of them
upgraded to 2.15 or 2.16, and then failed to upgrade
further once additional vulnerabilities were identified
in these versions.

This indicates that whilst many developers are
highly active, they lack visibility into the overall
composition of their software estates, leading to
partially completed upgrades, but with no records
of previous upgrades or outstanding vulnerabilities,
meaning that they would need to start from scratch
every time they needed to update.

Also concerning is data from Maven Central
Administrator, Sonatype showing that even since

December 10, 41% of the 31.4m Log4j downloads
are vulnerable versions.

Code Insights from BlueOptima
Code Insights provides an objective insight into your
estate’s source code so that you can accurately and
conveniently reduce application security risk while
minimising the impact on technical debt incurred
from shift-left initiatives.

Code Insights helps organisations to reduce risk in
software development investments while minimising
developer technical debt by scanning for Open
Source & Internal dependencies to prioritise fixes
on vulnerabilities and enable consistent Estate
Management.

For organisations seeking to use data to drive
collaboration to reduce technical debt, Code
Insights is a SaaS tool that provides action-oriented
strategies to reduce digital security risks in both the
short and long term.

www.blueoptima.com/

enquiries@blueoptima.com

+44 207 100 8740

w

e

p

+44 207 100 8740

enquiries@blueoptima.com

www.blueoptima.com

p

e

w

Contact us

Page 4 | © BlueOptima Limited 2005-2022. All Rights Reserved
Report: Analysing the Influence of Commit Frequency on the Billable Coding Effort

mailto:enquiries%40blueoptima.com?subject=Drivers%20of%20Productivity%20Report%20Enquiry
http://www.blueoptima.com
mailto:enquiries%40blueoptima.com?subject=Commit%20Frequency%20Enquiry%20
https://www.blueoptima.com/
https://www.blueoptima.com/

Page 5 | © BlueOptima Limited 2005-2022. All Rights Reserved
Report: Analysing the Influence of Commit Frequency on the Billable Coding Effort

https://www.blueoptima.com/
https://www.blueoptima.com/

